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Abstract

Turbulent fluxes can be represented by a diffusivity tensor, the symmetric part of which describes ‘‘turbulent diffusion”

while the anti-symmetric part describes ‘‘advection”. Diffusion is a local process in the sense that it depends only on the
local gradients of the mean fields while advection is non-local for it is represented by an integral over all length scales
(all eddies) that can ‘‘fit” from say the bottom of the physical domain to the z where the fluxes are computed.

In the ocean, there are two main regimes where non-local transport is important. One regime is where storms release a
sudden burst of mechanical energy to the ocean surface that is then transported downward by energetic eddies that deepen
the mixed layer. Even relatively simple non-local models yield results considerably more realistic than those of local mod-
els. The second regime is deep convection (DC) caused by loss of surface buoyancy, the description of which is required for
a reliable assessment of water masses formation.

At present, there is no reliable model for either of these non-local regimes individually or much less a formalism capable
of accounting for both regimes simultaneously. The goal of this paper is to present a formalism that provides the expressions
for the non-local fluxes for momentum, heat and salinity encompassing both cases. Since the resulting number of dynamic
equations involves is however large, we work out two sub-models, one when only shear must be treated non-locally (e.g.,
when storms release mechanical energy) and one when only buoyancy is to be treated non-locally (the DC case).

We employ the Reynolds Stress formalism in which non-locality is represented by the third-order moments which in
turn depend on the fourth-order moments for which we employ a new model that has been tested against LES data, air-
craft data and a full PBL simulation.

For the DC case, we rewrite the non-local model in terms of Plumes since thus far the only non-local model used to treat
oceanic DC has been the ‘‘plume model” of Morton, Taylor and Turner (MTT model). We show that the MTT model has
two key limitations, (1) an important physical process such as the rate of entrainment cannot be determined by the model
and remains an adjustable parameter and (2) MTT is purely advective and thus only applicable to the initial stages of DC
but not to the whole process which is both advective and diffusive. The model we derive bypasses these limitations, is a
generalization of the MTT model and is applicable to the entire development of deep convection.
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1. Local models. Brief summary

In previous papers (Canuto et al., 2001, 2002, 2004a,b; cited as C1,2,4a,b), the authors presented the most
complete local mixing model that present knowledge of the Reynolds Stress Model allowed us to construct.
The model has essentially no adjustable parameters and includes temperature, salinity (double-diffusion),
and velocity fields. In the stationary and local case, the dynamic equations for the Reynolds stresses, heat flux,
salinity flux, temperature variance, salinity variance and temperature–salinity correlations, were solved analy-
tically. The resulting momentum, heat and salinity fluxes were found to have the forms:
uw ¼ �Km
oU
oz
; vw ¼ �Km

oV
oz
; wh ¼ �Kh

oT
oz
; ws ¼ �Ks

oS
oz

ð1aÞ
Here, overbars indicate a time or ensemble average, u, v, w, h, s are the fluctuating components of the velocity,
temperature and salinity fields whose mean components are U, V, T, S, and the Ka’s are the momentum, heat
and salt diffusivities. Furthermore, the mass flux is given by:
qw ¼ �Kq
oq
oz
¼ g�1qoKqN 2; Kq ¼ ðKh � RqKsÞð1� RqÞ�1 ð1bÞ
Here, Kq is the mass diffusivity given in terms of the heat and salt diffusivities, N is the Brunt–Vaisala
frequency, Rq is the density ratio Rq = (aSoS/oz)(aToT/oz)�1, where aT,S are the thermal expansion and haline
contraction coefficients. The diffusivities Ka were derived to have the following form:
Ka ¼ Ca
e

N 2
; Ca ¼

1

2
ðsRÞ2RiSaðRi;RqÞ ð1cÞ
where Ri = N2R�2 is the Richardson number, R ¼ ðU 2
z þ V 2

z Þ
1=2 is the mean shear, s = 2 K/e is the eddy’s

dynamical time scale, K is the turbulent kinetic energy and e is the rate of dissipation of K. Finally, Sa(Ri,Rq)
are algebraic dimensionless structure functions given in C2 (Eqs. (13)–(15)). The Ca are called mixing efficien-

cies and most past models have assumed that there is only one C with a value of 0.2 (Osborn, 1980). By
contrast, the C1,2 models compute the Ca (C2, Fig. 7). To give a concrete example of how the model is used,
consider the total production of turbulent kinetic energy P, defined as the sum of shear and buoyancy contri-
butions, P = Ps + Pb where:
P s ¼ �ðuwU z þ vwV zÞ ¼ KmR2; P b ¼ �gq�1
0 qw ¼ �KqN 2 ð2aÞ
Substituting the above results into the production = dissipation relation, P = e, one obtains after simple
algebra:
1

2
ðsRÞ2ðSm � RiSqÞ ¼ 1 ð2bÞ
Using the algebraic forms of the functions Sa derived in C2, Eq. (2b) yields sR in terms of Ri, Rq. The mixing
efficiencies Ca(Ri,Rq) are then obtained from Eq. (1c) and are exhibited in Fig. 7 of C2. Finally, the diffusivities
are computed from (1c) after one specifies the physical processes responsible for the dissipation e, a topic we
discuss next.

1.1. Mixed layer. Shear instabilities

In the mixed layer where shear instabilities dominate, the dissipation is computed as (e = K3/2K�1,s = 2K/e):
eML ¼ 8K2R3ðsRÞ�3 ð2cÞ

where K is a mixing length discussed in C2 (their Eqs. (24a,b)).

1.2. Abyssal ocean. Internal gravity waves (IGW)

In the thermocline, where internal gravity waves contribute the most to the dissipation and thus to the
diffusivities, we used for e the expression suggested by the Gregg–Henyey–Polzin model (Polzin et al., 1995;
Polzin, 1996; Kunze and Sanford, 1996; Gregg et al., 1996; Toole, 1998):
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eIGW ¼ 0:288N 2Lðh;NÞ ð2dÞ

where the latitude dependence factor L(h,N) has been given by Gregg et al. (2003). The implications of (2d) on
the sharpness of the equatorial thermocline have been recently studied in C4b.

Finally, in C1,2 the results of the new mixing models were assessed using the z-coordinate NCAR ocean
stand alone code. Several global and local results were discussed vs. Levitus data and the NATRE experiment
(Ledwell et al., 1993, 1998).

2. Non-locality. Physical considerations

As Eq. (1a) shows, the C1,2 is a local model since the fluxes at z are computed using the gradients of the
mean fields at the same location. On the other hand, there are physical reasons to believe that a local model is
incomplete since turbulence not only produces non-zero correlations such as the ones in Eq. (1a), but also trans-

ports them, a feature that local models do not encompass. Non-locality means that in regions where there is no
local production of turbulence, mixing is nonetheless present since it was produced elsewhere and transported
there by non-local effects. To quantify the argument, consider the heat flux J h ¼ wh. A general expression that
exhibits non-locality is of the form:
J hðzÞ ¼
Z z

Gðz; z0Þ oT
oz0

dz0 ð3aÞ
where G(z,z0) has the dimension of a heat diffusivity divided by a length. Clearly, the heat flux at z is given by
the contribution of all the fluxes up to z and in that sense Eq. (3a) is a very general expression for a non-local
flux.

To show that a turbulence model that accounts for the third-order moments gives rise to the same expres-
sion as (3a), we consider the formal solution of the second-order moments in which the third-order moments
were left unchanged. Such a solution was found by Canuto et al. (2005a) and reads as follows:
J h ¼ �Kh
oT
oz
þ A1

ow3

oz
� A2

owh2

oz
� A3

ow2h
oz

ð3bÞ
The first term represents the local model while the remaining three terms represent non-locality. The functions
Kh and A1,2,3 (the Ak’s do not have the units of diffusivity) were found to be:
DKh ¼ 2Ks; DA1 ¼
9s2

50

oT
oz
; DA2 ¼

3

5
gas2; DA3 ¼ 3s ð3cÞ
where D = 36 + 1.8N2s2, N2 = gaoT/oz. Below in section VI we show that the stationary solution of the
dynamic equations for the third-order moments are given by Eqs. (14a)–(14d) or even more simply by Eq.
(14e). Substituting the latter into (3b) and assuming Jzz � 0 (which is valid in the well-mixed steady state
PBL), we obtain:
J h ¼ J ‘ þ ‘�
oJ h

oz
ð3dÞ
where
J ‘ ¼ �Kh
oT
oz

ð3eÞ
is the local flux while the non-local contribution is given by the second term in (3d) where the length ‘* is given
by:
D‘� ¼ �10�2s2N 2 os2w2

oz
þ s

osw2

oz
þ 3

5
gas2 osJ h

oz
ð3fÞ
and is expressed in terms of only second order moments. A simple way to solve (3d) is by approximating the
heat flux Jh that appears in the last term in (3f) with J‘ given by (3e). At which point, Eq. (3d) becomes a first-
order differential equation that can be solved analytically with the result:
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J hðzÞ ¼
Z z

dz0Gðz; z0Þ oT
oz0

ð3gÞ

Gðz; z0Þ ¼ exp½aðz0Þ � aðzÞ�Khðz0Þ‘�1
� ðz0Þ ð3hÞ

aðzÞ ¼ �
Z z dz0

‘�ðz0Þ
ð3iÞ
Eq. (3g) has indeed the structure (3a).
3. Non-locality. Past models

Here, we briefly review past non-local models. In the case of the planetary boundary layer PBL, several
authors have suggested semi-empirical non-local models for the heat and scalar fluxes by adding to the local
terms heuristic non-local terms, also known as counter-gradient terms (Deardorff, 1972; Troen and Mahrt,
1986; Holtslag et al., 1990, 1991, 1993; Wyngaard and Weil, 1991). For a convective PBL, Holtslag and
Moeng (1991) have suggested the expression:
J h ¼ �Kh
oT
oz
þ Ch; Ch ¼ 0:1w�h

�1swhjsurf ð4Þ
where w� ¼ ðgahwhjsurfÞ
1=3. As one can notice, (4) is a simplified form of the fourth term in (3b). In spite of

these simplifications, Holtslag and Boville (1993) showed that this non-local model transported moisture more
efficiently from the surface to higher vertical levels in a global climate model. In the ocean case, Large et al.
(1994) adopted the non-local model of Troen and Mahrt (1986) for the heat flux which is also of the form (4).

However, several questions remain unanswered. Consider the salinity flux. Does it behave like the temper-
ature flux? Are the coefficients in the PBL non-local model the same as in the ocean? Why only the heat/salin-
ity flux? Why not the momentum flux as well? Regrettably, we cannot answer most of these questions since a
general non-local model does not yet exist.

One could argue that only the temperature/salinity fields must be treated non-locally and that is the under-
lying assumption of the work of Large et al. (1994). Since the Labrador Sea, Gulf of Lyon and the Weddell Sea
are the seats of buoyancy-dominated mixing (Deep Convection, DC), one must treat those processes
non-locally since the eddies that are involved are as large as they can be and for such a case a local model is
certainly inadequate. In the Large et al., model, the non-locality is activated only when there are surface losses
of buoyancy that render the surface waters quite dense and thus prone to sinking. The non-local DC regions are
quite limited in geographic extent since most of the world’s ocean mixing is not driven by DC but by shear.
Should the momentum flux be treated locally or non-locally? We face here a problem of completeness: if we
want to treat non-locality without prejudging which field is affected and which is not, we must treat all three
fields T, S, U as non-local. This is borne out by recent simulations vs. data comparison studies (Ferrero and
Racca, 2004; Ferrero, 2005; Ferrero and Colonna, in press) which show that in the pure shear case:
pure shear case : u2w � v2w � w3 � Sw ð5aÞ
while in the shear and convection case the third-order moments:
gasw2h; w3; ðgasÞ2wh2 ð5bÞ
contribute to the dynamic equations with similar weight. In treating all fields as non-local, we face however two
problems. First, a heuristic approach is out of the question because it would entail a myriad of adjustable
parameters even admitting that one knew how to write the phenomenological expressions for all the fluxes. Sec-
ond, the only alternative is to rely on the dynamic equations that describe the third-order moments but those
equations entail fourth-order moments (FOMs) which have traditionally been the weakest point in any turbu-
lence-based approach to mixing. A key priority is to construct a reliable model for the FOMs, a topic that we
presented in detail in Cheng et al. (2005) and which we summarize for completeness in Appendix C.
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4. Non-local models with shear and buoyancy

Let us consider the four dynamic equations for the mean velocity, temperature and salinity fields:
DU
Dt
¼ � ouw

oz
;

DV
Dt
¼ � ovw

oz
ð5cÞ

DT
Dt
¼ � owh

oz
;

DS
Dt
¼ � ows

oz
ð5dÞ
where for simplicity we have left out external sources. As one can observe, one needs four second-order
moments, uw; vw; wh; ws. However, it turns out that their dynamic equations involve other second-order
moments so that in practice one needs the dynamic equations for the following variables:
Velocity field : uw; vw; uv; u2;w2;K

Temperature field : wh; uh; vh; h2

Salinity field : ws; us; vs; s2

Temperature–salinity correlation : sh

Dissipation : e

ð6Þ
With the turbulent kinetic energy K and the dissipation e one then constructs the dynamical time scale s = 2K/
e that enters in all dynamic equations. Finally, since turbulence is not isotropic and K ¼ 1

2
ðu2 þ v2 þ w2Þ, one

needs K, u2 and w2. To avoid interrupting the presentation, we give the full set of dynamic equations for the
variables (6) in Appendices A–C.

The complete non-local model entails 15 time dependent differential equations for the second order
moments and 16 time dependent differential for the third-order moments for the temperature field. The salinity
will require an analogous set of equations which can be obtained from the previous ones using symmetry argu-
ments based on Eq. (11b). In what follows, we present two simpler non-local models which represent a good
approximation to the full model. We shall divide the ocean into shear-driven, non-convective regimes and
convectively driven regimes.
5. Shear driven regimes

In a stably stratified ocean, most of the mixing is shear driven. We consider the fluxes of temperature and
salinity to be local since these terms are sinks in the budget for K while the velocity field is treated non-locally
since it acts like a source and thus its tendency is to give rise to large eddies. Specifically, Eqs. (2)–(4) of Appen-
dix A are taken to be local. This allows us to solve them analytically with the following results:
wh ¼ �Kh
oT
oz
; ws ¼ �Ks

oS
oz

ð7Þ
where the heat and salt diffusivities are given by:
DhKh ¼ p4s w2 � p2ð1� c1Þgassws� 1

4
a3p4sðuwU z þ vwV zÞ

� �
ð8Þ

DsKs ¼ p1s w2 þ p2ð1� c1ÞgaT swh� 1

4
a3p1sðuwU z þ vwV zÞ

� �
ð9Þ
while the dimensionless functions Dh,s are given by:
Dh ¼ 1þ ðsRÞ2p4 ð1� c1Þðp5 � p2RqÞð1� RqÞ�1Ri� 1

4
a3ð1� a3Þp4

� �
ð10aÞ

Ds ¼ 1þ ðsRÞ2p1 ð1� c1Þðp2 � p3RqÞð1� RqÞ�1Ri� 1

4
a3ð1� a3Þp1

� �
ð10bÞ
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The coefficients p’s, c1, a3, and c8, c11 in (12) are given at the end of Appendix A. On the other hand, the
momentum fluxes uw; vw that appear in Eqs. (8) and (9) are obtained by solving Eqs. (1a)–(1f)–(5a,b) of
Appendix A, a total of seven differential equations. The buoyancy fluxes B1,2 defined in (1g) of Appendix
A are given by:
B1 ¼ �p1sN 2½uw� ð1� a3ÞKqU z�
B2 ¼ �p1sN 2½vw� ð1� a3ÞKqV z�
Kq ¼ ðKh � RqKsÞð1� RqÞ�1

ð11aÞ
where Kq is the mass diffusivity, Eq. (1b) above. Since
dq ¼ �aT hþ ass ð11bÞ

is invariant under h ? s, aT ? �as, Rq ! R�1

q , so are Eqs. (10a) and (10b) if:
p1 ¼ p4; p3 ¼ p5 ð11cÞ

which coincide with the relations derived in C2.

Finally, the third-order moments in Eqs. (1a)–(1f) of Appendix A are given by Eqs. (1) of Appendix B.
Contrary to the case of buoyancy dominated flows, in the case of shear dominated flows, there is no unequiv-
ocal evidence (e.g., Maurizi, 2006) in favor or against the widely used Quasi Normal Approximation (QNA) of
the fourth order moments:
abcd ¼ ab cd þ ac bd þ ad bc ð11dÞ

which we shall also adopt as working hypothesis. In that case, Eqs. (1) of Appendix B yield the following
TOMs:
2c8s
�1w3 ¼ �3w2

ow2

oz
ð12aÞ

2c8s
�1uw2 ¼ �uw

ow2

oz
� 2w2

ouw
oz
� ð1� c11Þw3U z ð12bÞ

2c8s
�1vw2 ¼ �vw

ow2

oz
� 2w2

ovw
oz
� ð1� c11Þw3V z ð12cÞ

2c8s
�1u2w ¼ �w2

ou2

oz
� 2uw

ouw
oz
� 2ð1� c11Þuw2U z ð12dÞ

2c8s
�1v2w ¼ �w2

ov2

oz
� 2vw

ovw
oz
� 2ð1� c11Þvw2V z ð12eÞ

2c8s
�1uvw ¼ �vw

ouw
oz
� uw

ovw
oz
� w2

ouv
oz
� ð1� c11Þðuw2V z þ vw2U zÞ ð12fÞ
together with:
oe
ot
þ owe

oz|{z}
non-locality

¼ c1s
�1P � c2es

�1 ð12gÞ

P ¼ �ðuwUz þ vwV zÞ þ gaT wh� gasws; we ¼ 0:8s�1 u2wþ v2wþ w3
� �

ð12hÞ
The non-local model for the case of shear driven flows is thus complete.

6. Convective regimes

Oceanic regimes where Deep Convection DC sets in, e.g., Labrador Sea, Gulf of Lyon and the Weddell Sea
(Schott et al., 1996; Marshall and Schott, 1999; Marshall and Fiadeiro, 2002; Timmerman and Beckmann,
2003; Canuto et al., C4a), must be treated with a non-local mixing model since the eddies can be as large
as the entire depth of DC. In this case, we neglect shear and treat the fluxes of T and S non-locally. Introduc-
ing the compact notation:



34 V.M. Canuto et al. / Ocean Modelling 16 (2007) 28–46
gaT wh ¼ gaT J h � Bh; gasws ¼ gasJ s � Bs; B ¼ Bh � Bs

N 2
h ¼ gaT

oT
oz
; N 2

s ¼ gaS
oS
oz
; N 2 ¼ N 2

h � N 2
s ¼ �gq�1

0

oq
oz
¼ N 2

hð1� RqÞ ð13aÞ
the model equations of Appendix A become:
oK
ot
þ o

oz
3

4
w3 ¼ B� e ð13bÞ

o

ot
w2 þ ow3

oz|{z}
non-locality

¼ 2

3
ð1þ 2b5ÞB�

2

3
e� 5s�1 w2 � 2K

3

� �
ð13cÞ

oJ h

ot
þ ow2h

oz|ffl{zffl}
non-locality

¼ �w2T z þ ð1� c1Þ gaT h2 � gashs
� �

� s�1p�1
4 J h ð13dÞ

oJ s

ot
þ o

oz
w2s|fflffl{zfflffl}

non-locality

¼ �w2Sz þ ð1� c1Þg aT hs� ass2
� �

� s�1p�1
4 ws ð13eÞ

oh2

ot
þ o

oz
wh2

|fflffl{zfflffl}
non-locality

¼ �2whT z � 2h2p�1
5 s�1 ð13fÞ

os2

ot
þ o

oz
ws2

|fflffl{zfflffl}
non-locality

¼ �2wsSz � 2s2p�1
5 s�1 ð13gÞ

hs ¼ �p4s wsT z þ whSz

	 

ð13hÞ
together with Eqs. (12g) and (12h) for a total of seven dynamic equations like in the shear driven case. The
third-order moments are taken to be the steady state solutions of Eqs. (2a)–(2c) of Appendix B, which, using
the forth-order moments discussed in Appendix C, become (Cheng et al., 2005):
w3 ¼ �A1
o

oz
w2 � A2

o

oz
wh� A3

o

oz
h2 ð14aÞ

w2h ¼ �A4

o

oz
w2 � A5

o

oz
wh� A6

o

oz
h2 ð14bÞ

wh2 ¼ �A7

o

oz
wh� A8

o

oz
h2 ð14cÞ
All the third-order moments exhibit a linear combination of the z-derivatives of the second-order moments, as
first discussed in Canuto et al. (1994). In (14a–c), the ‘‘diffusivities” A’s are given by (k = (1 � c11)gaT):
A1 ¼ a1w2 þ a2kswh
� �

s; A2 ¼ a3w2 þ a4kswh
� �

ks2

A3 ¼ a5w2 þ a6kswh
� �

k2s3; A4 ¼ a7swh

A5 ¼ a8w2 þ a9kswh
� �

s; A6 ¼ a10w2 þ a11kswh
� �

ks2

A7 ¼ a12swh; A8 ¼ a13w2 þ a14kswh
� �

s ð14dÞ
The coefficients ak’s in (14d) are listed in Table 1.
Even though Eqs. (14a)–(14d) are relatively simple and have been successfully tested against LES data

(Cheng et al., 2005), more recently we have succeeded in reducing them even further without deteriorating
the comparison with LES data. In fact, we have found the following simplified version of (14a)–(14d):
w3 ¼ �0:06gas2w2
owh
oz

; w2h ¼ �0:3sw2
owh
oz

; wh2 ¼ �swh
owh
oz

ð14eÞ



Fig. 1. The third moment w3 vs. height normalized by the PBL depth, h. The filled circles represent the aircraft data of Hartmann et al.
(1999). The dashed line represents the LES data of Mironov et al. (2000). The solid line represents the result of the new model, Eq. (14e),
using the second-order moments from the same LES data as input. The normalization is the Deardorff’s standard normalization,
w� ¼ ðgahwhjsurfÞ

1=3, h� ¼ w�1
� whjsurf .

Table 1
Constants in Eqs. (14d)

a1 2.1429 � 10�1 a6 6.9573 � 10�4 a11 3.2468 � 10�3

a2 1.5306 � 10�2 a7 7.1429 � 10�2 a12 1.6667 � 10�1

a3 3.0612 � 10�2 a8 1.4286 � 10�1 a13 8.3333 � 10�2

a4 5.1020 � 10�3 a9 2.3810 � 10�2 a14 2.2727 � 10�2

a5 2.5510 � 10�3 a10 1.1905 � 10�2
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which in Figs. 1–3 we compare with the LES data (Mironov et al., 2000) and with aircraft data (Hartmann
et al., 1999). The data are reproduced quite well. The first of (14e) correctly yields a negative skewness below
the cooling ocean surface (or equivalently below the cloud top in the PBL case, see Stevens et al., 2005) where
oB/oz > 0, while it yields a positive skewness near a surface heated from below where oB/oz < 0. By contrast, a
down-gradient type of approximation which corresponds to the first term (14a):
w3 � �sw2
ow2

oz
ð14fÞ
would yield the wrong sign of the skewness in both the above cases. To further highlight the physical content
of (14e), we can write that:
gaw2h ¼ 5s�1ðw2Þ3=2Sw; gawh2 ¼ 17s�1whðw2Þ1=2Sw ð14gÞ

which shows the role of the skewness Sw ¼ w3=ðw2Þ3=2, as emphasized by previous authors (Wyngaard and
Weil, 1991; Hamba, 1995).

7. Plume models, old and new

Due to its importance in the formation of Atlantic deep waters, the Deep Convection regime has been
extensively studied with a non-local model, specifically a plume model, that, at first sight is different from



Fig. 2. Same as Fig. 1 but for w2h normalized with w2
�h�.

Fig. 3. Same as Fig. 1 but for wh2 normalized with w�h
2
�.
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the turbulence-based model we have just presented. It is therefore important to discuss the relationship
between the turbulence-based model and the plume model. That is the goal of this section.
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Paluszkiewicz et al. (1994), Alves (1995) and Paluszkiewicz and Romea (1997) studied Deep Convection
using the only plume model available, the MTT plume model (Morton et al., 1956; Turner, 1973, 1986) which
in turn was based on an original suggestion by Taylor (1945).

Plume models are attractive since they provide a rather intuitive visualization of the DC process exhibited
by LES studies which show the existence of narrow descending plumes and of wide ascending plumes (the
environment). Contrary to a non-local turbulence-based model that, as we have seen, is both advective and
diffusive (Section 2), the MTT model is only advective (see Eq. (17b) below). It contains two equations repre-
senting conservation of momentum and buoyancy, Eq. (17a). However, since there are three unknowns, the
third being the fraction of space occupied by the plumes that varies with z (or the plume’s radius), Taylor
suggested a phenomenological ‘‘entrainment equation” which contains an entrainment parameter a that the
MTT is unable to determine. The parameter a has therefore been traditionally treated as an adjustable coef-
ficient but in reality is a function of the large scale features of the flow. Ellison and Turner (1959) used lab-
oratory data to determine a = a(Ri), where Ri is the Richardson number, but this function provides a poor fit
to the Mediterranean outflow data (Price and Baringer, 1994; Price and Yang, 1998). A more complete for-
mulation of a that includes double-diffusion processes and which leads to a better representation of the data
has recently been suggested (Canuto et al., 2005b). A second problem with the MTT is that it assumes that r,
the fractional area occupied by a plume, is much smaller than unity:
Table
Deep c

Time

Initial
Final p
r << 1; r ¼ RpðRp þ ReÞ�1 ð15aÞ
where Rp(Re) is the total cross-section of the plumes (environment) at a given depth. However, since during the
plume’s evolution, the plumes entrain fluid from the environment, r is bound to increase with depth to the
point where (15a) becomes invalid. Specifically, entrainment causes the plume’s mass flux wpR

p / rwp to
increase while stable stratification decreases wp, the net result being an increase of r to the point where
(15a) is no longer applicable. In addition, a small r model cannot satisfy the zero mass flux relation (wu,d

are the velocities of the up and down drafts and z is considered upward):
rwd þ ð1� rÞwu ¼ 0 ð15bÞ
which is satisfied in oceanic DC since there is no external mass flux. In addition, in the limit of small r, Eq.
(15b) implies that:
jwd j >> wu ð15cÞ
On the other hand, for the argument given above, when r = 1/2, Eq. (15b) implies that:
wu ¼ jwd j ð15dÞ
which is not allowed under (15a). Finally, the mass conservation (15b) is invariant under the transformation:
wu ! wd ; r! 1� r ð15eÞ
and so should be any plume model. The MTT model is not invariant under (15e), and is valid only in the
plumes’ early development stages when the fraction of space occupied by the plumes is still small.

In summary, standard MTT plume model has the advantage of simplicity but at present: (1) it is restricted
by Eq. (15a), (2) it depends on the undetermined rate of entrainment a, (3) it is only advective and it leaves out
diffusion. In Table 2, we sketch the main features of the initial (t = 0) and final stages (t =1) of a DC event
ðSw ¼ w3=ðw2Þ3=2Þ.

In the fourth column we have indicated the up/down interplay. In the early stages, the downdrafts domi-
nate over updrafts, while in the final stages, updrafts and downdrafts are equally important. The last two
2
onvection

Sw r Up/down Diff Adv

phase <0 Small jwdj > > wu No Yes
hase �0 1/2 wu � jwdj Yes No
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columns show that the initial stages are governed by advection while the final stages are governed by diffusion.
To correct the limitations of the MTT model, we proceed as follows:

(1) We use the turbulence-based mixing model and limit the non-locality to the heat and salinity fluxes.
(2) The new plume model, being turbulence based, is such that all relations are invariant under (15e) and

thus the model is valid throughout the entire plume’s development.
(3) As a basic simplifying assumption, we write the non-local TOMs in the ‘‘plume approximation” which

assumes a top hat profile that consists of two delta functions for the pdf of each state variable, corre-
sponding to ascending and descending plumes. This implies (Lappen and Randall, 2001) that such a pro-
file has 100% probability of having one of just two possible values, the two allowed states being up-drafts
and down-drafts. This introduces a considerable simplification to the problem since it reduces substan-
tially the number of higher-order moments that are needed, it assures the realizability condition of the
higher order moments and requires fewer prognostic equations.
8. New plume model

To ‘‘plumenize” the TOMs using the up-down draft notation, we first employ the following relations
(Canuto and Dubovikov, 1998):
w2 ¼ rð1� rÞðwu � wdÞ2 ¼ brw2; br ¼ rð1� rÞ�1 ð16aÞ
J h ¼ rð1� rÞðwu � wdÞðhu � hdÞ ð16bÞ
h2 ¼ rð1� rÞðhu � hdÞ2 ¼ b�1

r w�2J 2
h ð16cÞ
where w � wd. Analogous relations hold for the salinity field. These relations are invariant under (15e). Thus,
the plumenized TOMs become:
w3 ¼ �rð1� rÞð1� 2rÞðwu � wdÞ3 ¼ ðw2Þ3=2Sw

w2h ¼ �rð1� rÞð1� 2rÞðhu � hdÞðwu � wdÞ2 ¼ ðw2Þ1=2SwJ h

wh2 ¼ �rð1� rÞð1� 2rÞðhu � hdÞ2ðwu � wdÞ ¼ ShJ hðh2Þ1=2

w2s ¼ ðw2Þ1=2SwJ s

ws2 ¼ SsJ sðs2Þ1=2 ð16dÞ
where the skewness of any field is taken to be:
Sa � ð2r� 1Þ½rð1� rÞ��1=2 ð16eÞ
In conclusion, the complete new plume model is given by Eqs. (13a)–(13h), (16d), (16e).
9. The small r limit. The MTT model

The goal of this section is to prove that the plume model just derived, which is valid for any r, contains the
MTT in the limit for small r. That is the goal of this section. The MTT model contains three equations
representing the plume’s kinetic energy 1/2w2, the fractional area r occupied by the plume and the buoyancy
B(cm2 s�3). They are (Turner, 1973; Eqs. 6.1.4 with b2 = r‘2 and for rising plumes with z pointing upward,
w > 0):
ow2

oz
¼ 2B

rw
� 4a

‘

w2

r1=2

or
oz
¼ � B

w3
þ 4ar1=2

‘
oB
oz
¼ �rwN2; N2 � �gq�1

ref dqenv=dz ð17aÞ
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where a is the entrainment coefficient discussed earlier, the subscript ‘‘env” stands for environment and ‘‘ref”
stands for a reference density in the environment. Eqs. (17a) are not invariant under (15e) since they are only
applicable in the regime (15a). If one substitutes the buoyancy equation into the mean temperature equation,
one obtains:
oT
ot
þ ðwþ wadvÞ

oT
oz
¼ 0; wadv ¼ �rw ð17bÞ
Since the rhs of the first of (17b) is zero, there is no diffusion which shows what we stated earlier that the MTT
is solely advective with an advection velocity wadv that is r times the plume’s velocity. An additional interesting
variable is the plume’s ‘‘mass flux” defined as:
M ¼ rw ð17cÞ

Using (17a), one obtains the relation:
M�1 oM
oz
¼ E � D ¼ 2a

‘
r�1=2 > 0 ð17dÞ
where E and D stand for the rates of entrainment and detrainment respectively. Since the rhs of (17d) is
positive, MTT accounts only for entrainment but not detrainment which is understandable since detrainment
requires a dynamical environment which is excluded in the MTT model which assumes the environment to
be quiescent.

In the ocean case (w < 0) and the small r limit, we have from Eqs. (16a)–(16e) that:
br ¼ r; Sw ¼ �r�1=2; w2 ¼ rw2 ð18aÞ
and thus from Eq. (16d) it follows that:
w3 ¼ rw3; w2h ¼ wJ h; w2s ¼ wJ s; wh2 ¼ r�1=2J hðh2Þ1=2
; ws2 ¼ r�1=2J sðs2Þ1=2 ð18bÞ
Using (18b), the first of Eq. (14e) becomes:
oJ h

oz
¼ � w

Cgas2
ð18cÞ
Next, using (13c) and (13d), together with (18b), we obtain:
w3 or
oz
þ 3rw

2

ow2

oz
¼ 2

3
ð1þ 2b5ÞB�

4rw2

s
ð18dÞ

w
oJ h

oz
þ J h

2w
ow2

oz
¼ �rw2T z þ ð1� c1Þgar�1w�2J 2

h � s�1p�1
4 J h ð18eÞ
Solving Eqs. (18c)–(18e), and using (the coefficient C0 will be discussed later):
s ¼ �C0r
1=2w�1‘ ð18fÞ
we obtain:
ow2

oz
¼ 2ð1� c1Þw�1r�1Bþ 2C�1

0 p�1
4 w2r�1=2‘�1 � 2B�1w3rðN 2

h � C�1C�2
0 r�2‘�2w2Þ ð19aÞ

or
oz
¼ ð3c1 þ 4b5=3� 7=3ÞBw�3 þ ðC0p4Þ�1ð4p4 � 3Þr1=2‘�1 þ 3wB�1ðr2N 2

h � C�1C�2
0 w2‘�2Þ ð19bÞ
Using the values:
C ¼ 0:06; b5 ¼ 1=2; c1 ¼ 1=3; p4 ¼ 0:08372 ð19cÞ

Eqs. (18d) and (18e) become:
ow2

oz
¼ 1:3w�1r�1Bþ 24C�1

0 w2r�1=2‘�1 � 2B�1w3rðN 2
h � 17C�2

0 r�2‘�2w2Þ ð19dÞ

or
oz
¼ �0:7Bw�3 � 32C�1

0 r1=2‘�1 þ 3wB�1ðr2N 2
h � 17C�2

0 w2‘�2Þ ð19eÞ
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Since in our system z is positive upward, and the descending plume is small near the surface getting progres-
sively larger at depth, dr/dz < 0, the second term in the rhs of (19e) that represents entrainment, must be
negative. By the same token, the second term in (19d) is positive since dw2/dz > 0. If C0 = 6 (which comes from
relating the dissipation length scale in (18f) to the ‘ in Eqs. (17a)), Eqs. (19d) and (19e) compare well with Eq.
(17a) of the MTT model (their Eq. 6.1.4) and Eqs. (10)–(11) of Paluszkiewicz and Romea (1997).
10. Conclusions

In this paper we have developed a non-local mixing model based on the Reynolds Stress formalism. We
have presented the most general non-local model that today’s knowledge in turbulent closure allowed us to
formulate. Clearly, the full model in which all the fields of temperature, salinity and 3D velocities are treated
non-locally, is fairly complex. To assess the validity of non-locality, we have worked out two simplified mod-
els. One is valid in Deep Convective regions and the other where strong winds release bursts of mechanical
energy that is transported through the mixed layer by energetic eddies which require a non-local treatment.

The case of Deep Convection (DC) was in the past treated with the non-local model represented by the
plume model (PM) of Morton et al. (1956), (MTT). Such a model has two substantial limitations, it is only
advective while in the final stages of DC diffusion dominates and the rate of entrainment is treated as an
adjustable quantity. By rewriting the turbulence-based mixing model developed here in the plume formalism,
a new PM emerges which no longer suffers from the limitations of the MTT model and is valid for the entire
development of a convective regime.
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Appendix A. Shear and buoyancy. Second-order moments

Here we present the explicit forms of the dynamic equations for the second-order moments of interest (the
general equations can be found in e.g., André et al., 1982; Mellor and Yamada, 1974, 1982; and Canuto,
1992):
o

ot
uwþ o

oz
uw2

|fflffl{zfflffl}
non-locality

¼ 1

2

4

5
K þ ða1 � a2Þu2 þ ða1 þ a2 � 2Þw2

� �
U z þ

1

2
ða1 � a2ÞuvV z þ b5B1 � 2s�1

pv uw ð1aÞ

o

ot
vwþ o

oz
vw2

|fflffl{zfflffl}
non-locality

¼ 1

2

4

5
K þ ða1 � a2Þv2 þ ða1 � a2 � 2Þw2

� �
V z þ

1

2
ða1 � a2ÞuvU z þ b5B2 � 2s�1

pv vw ð1bÞ

o

ot
uvþ o

oz
uvw|fflfflffl{zfflfflffl}

non-locality

¼ � 1� 1

2
ða1 þ a2Þ

� �
ðuwV z þ vwU zÞ � 2s�1

pv uv ð1cÞ

o

ot
w2 þ o

oz
w3

|ffl{zffl}
non-locality

¼ 1

3
a1 � a2

� �
uwU z þ vwV zð Þ þ 2

3
ð1þ 2b5ÞB�

2

3
e� 2s�1

pv w2 � 2K
3

� �
ð1dÞ

o

ot
u2 þ o

oz
u2w|fflffl{zfflffl}

non-locality

¼ 1

3
a1 þ a2 � 2

� �
uwUz �

2

3
a1vwV z þ

2

3
ð1� b5ÞB�

2

3
e� 2s�1

pv u2 � 2K
3

� �
ð1eÞ

oK
ot
þ 1

2

o

oz
ðu2wþ v2wþ w3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

non-locality

¼ �ðuwU z þ vwV zÞ þ B� e ð1fÞ
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The temperature/salinity fields enter through the fluxes B1,2,3 defined as follows:
Bi ¼ gðaT uih� asuisÞ; B3 � B ¼ gðaT wh� aswsÞ ð1gÞ

The dynamic equations for the following six fluxes:
uh; vh;wh; us; vs;ws
are given by:
o

ot
uhþ o

oz
uwh|fflfflffl{zfflfflffl}

non-locality

¼ �uwT z � ð1� a3ÞwhU z � s�1
ph uh ð2aÞ

o

ot
vhþ o

oz
vwh|fflfflffl{zfflfflffl}

non-locality

¼ �vwT z � ð1� a3ÞwhV z � s�1
ph vh ð2bÞ

o

ot
whþ o

oz
w2h|fflffl{zfflffl}

non-locality

¼ �w2T z þ ð1� c1Þg aT h2 � aShs
� �

� a3

4
uhU z þ vhV z

	 

� s�1

ph wh ð2cÞ

o

ot
usþ o

oz
uws|fflffl{zfflffl}

non-locality

¼ �uwSz � ð1� a3ÞwsUz � s�1
ps us ð3aÞ

o

ot
vsþ o

oz
vws|fflffl{zfflffl}

non-locality

¼ �vwSz � ð1� a3ÞwsV z � s�1
ps vs ð3bÞ

o

ot
wsþ o

oz
w2s|fflffl{zfflffl}

non-locality

¼ �w2Sz þ ð1� c1Þg aT hs� ass2
� �

� a3

4
ðusU z þ vsV zÞ � s�1

ps ws ð3cÞ
The temperature and salinity variances satisfy the dynamic equations:
oh2

ot
þ o

oz
wh2

|fflffl{zfflffl}
non-locality

¼ �2whT z � 2h2s�1
h ð4aÞ

os2

ot
þ o

oz
ws2

|fflffl{zfflffl}
non-locality

¼ �2wsSz � 2s2s�1
s ð4bÞ
The temperature–salinity correlation is taken to be (C2, Eq. (11)):
hs ¼ �sshðwsT z þ whSzÞ ð4cÞ
Finally, the dynamic equation for the dissipation rate e is given by Canuto et al. (1994):
oe
ot
þ owe

oz|{z}
non-locality

¼ c1s
�1ð�uiujUi;j þ BÞ � c2es

�1 ð5aÞ
with:
we ¼ 0:8s�1ðu2wþ v2wþ w3Þ; c1 ¼ 2:88; c2 ¼ 3:84 ð5bÞ

Furthermore (Ko = 1.66 is the Kolmogorov constant):
spv ¼
2

5
s; sph ¼ sps ¼ p1s ¼ p4s; p1 ¼

27

5
Ko3

� ��1=2

ð1þ r�1
t Þ
�1

sh ¼ ss ¼ p3s ¼ p5s; p3 ¼ rt ¼ 0:72; ssh ¼
1

3
s; b5 ¼

1

2

ð5cÞ
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a3 ¼ 0:29; c1 ¼ 1=3; c8 ¼ 5; c11 ¼ 0:1 ð5dÞ
s ¼ 2K=e ð5eÞ
We have a total of 15 differential equations.
Appendix B. Shear and buoyancy. Third-order moments

B.1. Velocity field
o

ot
w3 ¼ � o

oz
w4 þ 3w2

ow2

oz
� 2c8s

�1w3 þ 3ð1� c11Þgaw2h ð1aÞ

o

ot
uw2 ¼ � o

oz
uw3 � ð1� c11Þw3U z þ 2uw

ow2

oz
þ w2

ouw
oz
� 2c8s

�1uw2 þ 2ð1� c11Þgauwh ð1bÞ
o

ot
vw2 ¼ � o

oz
vw3 � ð1� c11Þw3V z þ 2vw

ow2

oz
þ w2

ovw
oz
� 2c8s

�1vw2 þ 2ð1� c11Þgavwh ð1cÞ

o

ot
u2w ¼ � o

oz
u2w2 � 2ð1� c11Þuw2U z þ u2

ow2

oz
þ 2uw

ouw
oz
� 2c8s

�1u2wþ ð1� c11Þgau2h ð1dÞ

o

ot
v2w ¼ � o

oz
v2w2 � 2ð1� c11Þvw2V z þ v2

ow2

oz
þ 2vw

ovw
oz
� 2c8s

�1v2wþ ð1� c11Þgav2h ð1eÞ

o

ot
uvw ¼ � o

oz
uvw2 � ð1� c11Þ uw2V z þ vw2U z

� �
þ uv

ow2

oz
þ uw

ovw
oz
þ vw

ouw
oz

� 2c8s
�1uvwþ ð1� c11Þgauvh ð1fÞ
B.2. Temperature field
o

ot
w2h ¼ � o

oz
w3hþ w2

owh
oz
þ 2wh

ow2

oz
� w3T z � 2c8s

�1w2hþ 2ð1� c11Þgawh2 ð2aÞ

o

ot
wh2 ¼ � o

oz
w2h2 þ 2wh

owh
oz
þ h2 ow2

oz
� 2w2hT z � 2c8s

�1wh2 þ ð1� c11Þgah3 ð2bÞ

o

ot
h3 ¼ � owh3

oz
þ 3h2 owh

oz
� 3wh2T z � 2c10s

�1h3 ð2cÞ

o

ot
uh2 ¼ � o

oz
uwh2 � ð1� c11Þwh2Uz þ 2uh

owh
oz
þ h2 ouw

oz
� 2uwhT z � 2c8s

�1uh2 ð2dÞ

o

ot
vh2 ¼ � o

oz
vwh2 � ð1� c11Þwh2V z þ 2vh

owh
oz
þ h2 ovw

oz
� 2vwhT z � 2c8s

�1vh2 ð2eÞ

o

ot
uwh ¼ � o

oz
uw2h� ð1� c11Þw2hU z þ uw

owh
oz
þ uh

ow2

oz
þ wh

ouw
oz
� uw2T z � 2c8s

�1uwh

þ ð1� c11Þgauh2 ð2fÞ
o

ot
vwh ¼ � o

oz
vw2h� ð1� c11Þw2hV z þ vw

owh
oz
þ vh

ow2

oz
þ wh

ovw
oz
� vw2T z � 2c8s

�1vwh

þ ð1� c11Þgavh2 ð2gÞ
o

ot
u2h ¼ � o

oz
u2wh� 2ð1� c11ÞuwhU z þ u2

owh
oz
þ 2uh

ouw
oz
� u2wT z � 2c8s

�1u2h ð2hÞ

o

ot
v2h ¼ � o

oz
v2wh� 2ð1� c11ÞvwhV z þ v2

owh
oz
þ 2vh

ovw
oz
� v2wT z � 2c8s

�1v2h ð2iÞ

o

ot
uvh ¼ � o

oz
uvwh� ð1� c11Þ uwhV z þ vwhU z

	 

þ uv

owh
oz
þ uh

ovw
oz
þ vh

ouw
oz
� uvwT z � 2c8s

�1uvh ð2jÞ
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Appendix C. Fourth-order moments

C.1. Previous models

Most previous models (Tatsumi, 1957; O’Brien and Francis, 1962; Ogura, 1962; Zeman and Lumley, 1976;
André et al., 1976, 1978; Bougeault, 1981; Chen and Cotton, 1983; Moeng and Randall, 1984; Canuto et al.,
1994) employed the quasi-normal approximation, QNA, Eq. (11d). As discussed in detail in Cheng et al.
(2005), in the case of the temperature field, Eq. (11d) can cause violations of the realizability condition derived
from Schwarz’ generalized inequalities (André et al., 1976):
jabcj 6 min

½a2ðb2c2 þ bc
2Þ�

1
2

½b2ða2 c2 þ ac2Þ�
1
2

½c2ða2b2 þ ab
2Þ�

1
2

8>><
>>:

9>>=
>>; ð1aÞ
where a, b, and c stand for any of u, v, w and h. In the stable case, Moeng and Randall (1984) pointed out that
QNA leads to a ‘‘wave equation” for the third-order moment:
o2

ot2
w3 ¼ �3gaw3

oT
oz
þ other terms ð1bÞ
with an oscillation frequency of f = (3gaoT/oz)1/2. Similar ‘‘wave equations” resulted from other TOM equa-
tions. The oscillations generated by these ‘‘wave equations” occur in the numerical simulations but are not
observed in the PBL and thus are spurious.
C.2. New model (Cheng et al., 2005; cited a C5)

Since the QNA neglects the cumulants, the new model must account for them. In principle, to formulate a
new model for the FOMs (fourth-order moments), one could begin with the dynamic equations of the FOMs,
but this would bring about a new set of parameterizations for the pressure and dissipation terms, and most of
all, the need to model the fifth-order moments. C5 proposed a new and simpler approach. Using as an input
the LES data for second and third-order moments, they derived information about the fourth-order cumu-
lants. To proceed, they re-wrote the third-order moment equations by subtracting from both sides the
QNA expressions (11d). The results are (k = (1 � c11)ga, b = � oT/oz):
o

oz
w4 � w4jQN

� �
¼ �2c8

w3

s
þ 3kw2h� 3w2

o

oz
w2 ð2aÞ

o

oz
w3h� w3hjQN

� �
¼ �2c8

w2h
s
þ bw3 þ 2kwh2 � 2w2

o

oz
wh� wh

o

oz
w2 ð2bÞ

o

oz
w2h2 � w2h2jQN

� �
¼ �2c8

wh2

s
þ 2bw2hþ kh3 � w2

o

oz
h2 � 2wh

o

oz
wh ð2cÞ

o

oz
wh3 � wh3jQN

� �
¼ �2c10

h3

s
þ 3bwh2 � 3wh

o

oz
h2 ð2dÞ

o

oz
u2w2 � u2w2jQN

� �
¼ �2c8

u2w
s
þ ku2h� w2

ou2

oz
ð2eÞ

o

oz
u2wh� u2whjQN

� �
¼ �2c8

u2h
s
þ bu2w� wh

ou2

oz
ð2fÞ
The lhs represent the z-derivatives of the cumulants that were parameterized as follows. Use of LES data to
estimate the rhs of Eq. (2) led C5 to conclude that a good representation is as follows:
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o

oz
w4 � w4jQN

� �
¼ p1

w3

s
;

o

oz
w3h� w3hjQN

� �
¼ p2

w2h
s
þ d1bw3 ð3aÞ

o

oz
w2h2 � w2h2jQN

� �
¼ p3

wh2

s
þ d2bw2h;

o

oz
wh3 � wh3jQN

� �
¼ p4

h3

s
þ d3bwh2 ð3bÞ

o

oz
u2w2 � u2w2jQN

� �
¼ p5

u2w
s
;

o

oz
u2wh� u2whjQN

� �
¼ p6

u2h
s
þ d4bu2w ð3cÞ
The constants p’s and d’s were then chosen so that (3a)–(3c) best match the full expressions (2a)–(2f) using as
input the LES data for the TOMs and SOMs (second-order moments) (Mironov et al., 2000). A key role was
played by the aircraft data by Hartmann et al. (1999). The ‘‘best” values were chosen as whole numbers for
simplicity and are listed in Table 1 of C5 who also plotted the z-derivatives of the cumulants (their Fig. 1).
These figures show that Eqs. (3) is a better approximation than that of previous authors (Gryanik and Hart-
mann, 2002).

The choice of the constants p’s by C5 effectively modifies the coefficients of the slow terms in the TOM
equations, and thus provides adequate damping that was lacking in previous models. In addition, the choice
of the constants d’s makes the z-derivatives of the cumulants cancel out the b terms in the TOM equations, as
Eqs. (14) of the text show. While Zeman and Lumley (1976) also neglected b in some of the TOM equations
arguing that they are small, C5 argued that the b terms are canceled by the non-zero cumulants. This argument
is supported by the TOM equations and the LES data presented in Fig. 1 of C5. In addition, the cancellation
of the b terms not only greatly simplifies the TOM equations, but also avoids the singularities in the unstable
case and eliminates the source of the spurious oscillations in the stable case discussed above.

To assess the validity of the new FOM model, C5 compared (3) with the measured data by plotting the
modeled FOMs with the SOMs and TOMs from the LES data (Mironov et al., 2000) as input, versus z/h
(h is the PBL height). Also plotted in C5 are the aircraft data of Hartmann et al. (1999), the model results
of Gryanik and Hartmann, 2002) and QNA respectively. The kurtosis of w from the models and from the
aircraft data is plotted in Fig. 2e of C5. To help assess the improvement shown in Fig. 2e, we refer the reader
to the measurements of w-kurtosis by Lenschow et al. (1994, 2000), who stated that ‘‘The kurtosis increases
with height from around 3 to about 5 near 0.9 z/zi. Above 0.9z/zi the kurtosis increases sharply”. In Fig. 2f, C5
plotted the w-kurtosis Kw versus skewness Sw from the new model and from Gryanik and Hartmann (2002) to
be compared with the aircraft data and with the empirical formula (Alberighi et al., 2002)
Kw ¼ 2:3ðS2
w þ 1Þ ð3dÞ
Judging from the comparisons with these data, the new model exhibits significant improvements when
compared with the QNA and with the Gryanik and Hartmann (2002) model.
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André, J.C., DeMoor, G., Lacarrére, P., Therry, G., du Vachat, R., 1978. Modeling the 24 h evolution of the mean and turbulent

structures of the planetary boundary layer. J. Atmos. Sci 35, 1861–1883.
André, J.C., Lacarrére, P., Traore, K., 1982. Pressure effects on triple correlations in turbulent convective flowsTurbulent Shear Flows, 3.

Springer, New York, pp. 243–252.
Bougeault, P., 1981. Modeling the trade-wind cumulus boundary layer. Part II: a high order one-dimensional model. J. Atmos. Sci 38,

2429–2439.
Canuto, V.M., 1992. Turbulent convection with overshooting: Reynolds stress approach. Astrophys. J 392, 218–232.
Canuto, V.M., Dubovikov, M.S., 1998. Stellar turbulent convection. I Theory. Astrophys. J. 493, 834–847.
Canuto, V.M., Minotti, F., Ronchi, C., Ypma, R.M., Zeman, O., 1994. Second-order closure PBL model with new third-order moments:

comparison with LES data. J. Atmos. Sci 51, 1605–1618.
Canuto, V.M., Howard, A., Cheng, Y., Dubovikov, M.S., 2001. Ocean turbulence, Part I: one-point closure model momentum and heat

vertical diffusivities. J. Phys. Oceanogr 31, 1413–1426, C1.



V.M. Canuto et al. / Ocean Modelling 16 (2007) 28–46 45
Canuto, V.M., Howard, A., Cheng, Y., Dubovikov, M.S., 2002. Ocean turbulence, Part II: vertical diffusivities of momentum, heat, salt,
mass and passive scalars. J. Phys. Oceanogr 32, 240–264, C2.

Canuto, V.M., Howard, A.M., Hogan, P., Cheng, Y., Dubovikov, M.S., Montenegro, E.M., 2004a. Modeling ocean deep convection.
Ocean Modell. 7, 75–95, C4a.

Canuto, V.M., Howard, A., Cheng, Y., Miller, R.L., 2004b. Latitude dependent vertical mixing and the tropical thermocline in a global
OGCM. Geophy. Res. Lett. 31, L16305, 19.1029/2004GL019891, C4b.

Canuto, V.M., Cheng, Y., Howard, A.M., 2005a. What causes the divergences in local second-order closure models? J. Atmosph. Sci 62,
1645–1651.

Canuto, V.M., Dubovikov, M.S., Cheng, Y., 2005b. Entrainment: local and non-local turbulence models with double diffusion. Geophys.
Res. Lett 32, L22604. doi:10.1029/2005GL02377.

Chen, C., Cotton, W.R., 1983. Numerical experiments with a one dimensional highorder turbulence model: simulation of the Wangara
Day 33 case. Bound. Layer Meteor. 25, 375–404.

Cheng, Y., Canuto, V.M., Howard, A.M., 2005. Non-local convective PBL model based on new third and fourth order moments. J.
Atmosph. Sci 62, 2189–2204, C5.

Deardorff, J.W., 1972. Theoretical expression for the counter-gradient vertical heat flux. J. Geophys. Res 77, 5900–5904.
Ellison, T.H., Turner, J.S., 1959. Turbulent entrainment in stratified flows. J. Fluid Mech. 6, 423–448.
Ferrero, E., 2005. Third-order moments for shear driven boundary layer. Bound. Layer. Meteor. 116, 461–466.
Ferrero, E., Colonna, N., in press. Non-local treatment of the buoyancy-shear driven boundary layer. J. Atmos. Sci.
Ferrero, E., Racca, M., 2004. The role of non-local transport in modeling the shear-driven atmospheric boundary layer. J. Atmos. Sci. 61,

1434–1445.
Gregg, M.C., Winkel, D.P., Sanford, T.S., Peters, H., 1996. Turbulence produced by internal waves in the ocean thermocline at mid and

low latitudes. Dyn. Atmos. Oceans 24, 2–14.
Gregg, M.C., Sanford, T.B., Winkel, D.P., 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature 422,

513–515.
Gryanik, V.M., Hartmann, J., 2002. A turbulence closure for the convective boundary layer based on a two-scale mass-flux approach.

J. Atmos. Sci 59, 2729–2744.
Hamba, F., 1995. An analysis of non-local scalar transport in the convective boundary layer using the Green function. J. Atmosph. Sci 52,

1084–1095.
Hartmann, J., Albers, F., Argentini, S., Bochert, A., Bonafe, U., Cohrs, W., Conidi, A., Freese, D., Georgiadis, T., Ippoliti, A., Kaleschke,
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